Striatal cholinergic interneurons and cortico-striatal synaptic plasticity in health and disease
Corresponding Author
Marc Deffains
Department of Medical Neurobiology (Physiology), Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University—Hadassah Medical School, Jerusalem, Israel
The Edmond and Lily Safra Center (ELSC) for Brain Sciences, The Hebrew University, Jerusalem, Israel
Correspondence to: Marc Deffains, Department of Medical Neurobiology (Physiology), The Hebrew University-Hadassah Medical School, POB 12272, Jerusalem, 91120, Israel, E-mail: [email protected]Search for more papers by this authorHagai Bergman
Department of Medical Neurobiology (Physiology), Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University—Hadassah Medical School, Jerusalem, Israel
The Edmond and Lily Safra Center (ELSC) for Brain Sciences, The Hebrew University, Jerusalem, Israel
Search for more papers by this authorCorresponding Author
Marc Deffains
Department of Medical Neurobiology (Physiology), Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University—Hadassah Medical School, Jerusalem, Israel
The Edmond and Lily Safra Center (ELSC) for Brain Sciences, The Hebrew University, Jerusalem, Israel
Correspondence to: Marc Deffains, Department of Medical Neurobiology (Physiology), The Hebrew University-Hadassah Medical School, POB 12272, Jerusalem, 91120, Israel, E-mail: [email protected]Search for more papers by this authorHagai Bergman
Department of Medical Neurobiology (Physiology), Institute for Medical Research Israel-Canada (IMRIC), The Hebrew University—Hadassah Medical School, Jerusalem, Israel
The Edmond and Lily Safra Center (ELSC) for Brain Sciences, The Hebrew University, Jerusalem, Israel
Search for more papers by this authorFunding agencies: This work was supported by grants from the Edmond and Lily Safra Center (ELSC), the European Research Council (ERC), the Israel Science Foundation (ISF), the Israel-US Binational Science Foundation (BSF), the German Israel Science Foundation (GIF), the Adelis, Rostrees and Vorst foundations.
Relevant conflicts of interest/financial disclosures: Nothing to report.
Full financial disclosures and author roles may be found in the online version of this article.
Abstract
Basal ganglia disorders such as Parkinson's disease, dystonia, and Huntington's disease are characterized by a dysregulation of the basal ganglia neuromodulators (dopamine, acetylcholine, and others), which impacts cortico-striatal transmission. Basal ganglia disorders are often associated with an imbalance between the midbrain dopaminergic and striatal cholinergic systems. In contrast to the extensive research and literature on the consequences of a malfunction of midbrain dopaminergic signaling on the plasticity of the cortico-striatal synapse, very little is known about the role of striatal cholinergic interneurons in normal and pathological control of cortico-striatal transmission. In this review, we address the functional role of striatal cholinergic interneurons, also known as tonically active neurons and attempt to understand how the alteration of their functional properties in basal ganglia disorders leads to abnormal cortico-striatal synaptic plasticity. Specifically, we suggest that striatal cholinergic interneurons provide a permissive signal, which enables long-term changes in the efficacy of the cortico-striatal synapse. We further discuss how modifications in the striatal cholinergic activity pattern alter or prohibit plastic changes of the cortico-striatal synapse. Long-term cortico-striatal synaptic plasticity is the cellular substrate of procedural learning and adaptive control behavior. Hence, abnormal changes in this plasticity may underlie the inability of patients with basal ganglia disorders to adjust their behavior to situational demands. Normalization of the cholinergic modulation of cortico-striatal synaptic plasticity may be considered as a critical feature in future treatments of basal ganglia disorders. © 2015 International Parkinson and Movement Disorder Society
Supporting Information
Additional Supporting Information may be found in the online version of this article at the publisher's web-site.
Filename | Description |
---|---|
mds26300-sup-0001-suppinfofs1.tif6.6 MB |
Supplementary Information Figure 1 |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
References
- 1 Aosaki T, Miura M, Suzuki T, Nishimura K, Masuda M. Acetylcholine-dopamine balance hypothesis in the striatum: an update. Geriatr Gerontol Int 2010; 10(Suppl 1): S148-S157.
- 2 Picconi B, Passino E, Sgobio C, et al. Plastic and behavioral abnormalities in experimental Huntington's disease: a crucial role for cholinergic interneurons. Neurobiol Dis 2006; 22: 143-152.
- 3 Pisani A, Bonsi P, Centonze D, Gubellini P, Bernardi G, Calabresi P. Targeting striatal cholinergic interneurons in Parkinson's disease: focus on metabotropic glutamate receptors. Neuropharmacology 2003; 45: 45-56.
- 4 Pisani A, Bernardi G, Ding J, Surmeier DJ. Re-emergence of striatal cholinergic interneurons in movement disorders. Trends Neurosci 2007; 30: 545-553.
- 5 Joshua M, Adler A, Mitelman R, Vaadia E, Bergman H. Midbrain dopaminergic neurons and striatal cholinergic interneurons encode the difference between reward and aversive events at different epochs of probabilistic classical conditioning trials. J Neurosci 2008; 28: 11673-11684.
- 6 Morris G, Arkadir D, Nevet A, Vaadia E, Bergman H. Coincident but distinct messages of midbrain dopamine and striatal tonically active neurons. Neuron 2004; 43: 133-143.
- 7 Cragg SJ. Meaningful silences: how dopamine listens to the ACh pause. Trends Neurosci 2006; 29: 125-131.
- 8 DeBoer P, Abercrombie ED. Physiological release of striatal acetylcholine in vivo: modulation by D1 and D2 dopamine receptor subtypes. J Pharmacol Exp Ther 1996; 277: 775-783.
- 9 Pisani A, Bonsi P, Centonze D, Calabresi P, Bernardi G. Activation of D2-like dopamine receptors reduces synaptic inputs to striatal cholinergic interneurons. J Neurosci 2000; 20: RC69.
- 10 Rice ME, Cragg SJ. Nicotine amplifies reward-related dopamine signals in striatum. Nat Neurosci 2004; 7: 583-584.
- 11 Threlfell S, Lalic T, Platt NJ, Jennings KA, Deisseroth K, Cragg SJ. Striatal dopamine release is triggered by synchronized activity in cholinergic interneurons. Neuron 2012; 75: 58-64.
- 12 Benarroch EE. Effects of acetylcholine in the striatum: recent insights and therapeutic implications. Neurology 2012; 79: 274-281.
- 13 Bonsi P, Cuomo D, Martella G, et al. Centrality of striatal cholinergic transmission in basal ganglia function. Front Neuroanat 2011; 5: 6.
- 14 Bar-Gad I, Bergman H. Stepping out of the box: information processing in the neural networks of the basal ganglia. Curr Opin Neurobiol 2001; 11: 689-695.
- 15 Bar-Gad I, Morris G, Bergman H. Information processing, dimensionality reduction and reinforcement learning in the basal ganglia. Prog Neurobiol 2003; 71: 439-473.
- 16 Goldberg JA, Bergman H. Computational physiology of the neural networks of the primate globus pallidus: function and dysfunction. Neuroscience 2011; 198: 171-192.
- 17 Gurney K, Prescott TJ, Wickens JR, Redgrave P. Computational models of the basal ganglia: from robots to membranes. Trends Neurosci 2004; 27: 453-459.
- 18 Parush N, Tishby N, Bergman H. Dopaminergic balance between reward maximization and policy complexity. Front Syst Neurosci 2011; 5: 22.
- 19 Bayer HM, Glimcher PW. Midbrain dopamine neurons encode a quantitative reward prediction error signal. Neuron 2005; 47: 129-141.
- 20 Dayan P, Balleine BW. Reward, motivation, and reinforcement learning. Neuron 2002; 36: 285-298.
- 21 Fiorillo CD, Tobler PN, Schultz W. Discrete coding of reward probability and uncertainty by dopamine neurons. Science 2003; 299: 1898-1902.
- 22 Nakahara H, Itoh H, Kawagoe R, Takikawa Y, Hikosaka O. Dopamine neurons can represent context-dependent prediction error. Neuron 2004; 41: 269-280.
- 23 Satoh T, Nakai S, Sato T, Kimura M. Correlated coding of motivation and outcome of decision by dopamine neurons. J Neurosci 2003; 23: 9913-9923.
- 24 Schultz W, Dayan P, Montague PR. A neural substrate of prediction and reward. Science 1997; 275: 1593-1599.
- 25 Calabresi P, Centonze D, Gubellini P, Pisani A, Bernardi G. Acetylcholine-mediated modulation of striatal function. Trends Neurosci 2000; 23: 120-126.
- 26 Kreitzer AC, Malenka RC. Striatal plasticity and basal ganglia circuit function. Neuron 2008; 60: 543-554.
- 27 Reynolds JN, Hyland BI, Wickens JR. A cellular mechanism of reward-related learning. Nature 2001; 413: 67-70.
- 28 Shen W, Flajolet M, Greengard P, Surmeier DJ. Dichotomous dopaminergic control of striatal synaptic plasticity. Science 2008; 321: 848-851.
- 29 Surmeier DJ, Ding J, Day M, Wang Z, Shen W. D1 and D2 dopamine-receptor modulation of striatal glutamatergic signaling in striatal medium spiny neurons. Trends Neurosci 2007; 30: 228-235.
- 30 Berridge KC, Robinson TE. What is the role of dopamine in reward: hedonic impact, reward learning, or incentive salience? Brain Res Brain Res Rev1998;28: 309-369.
- 31 Berridge KC, Robinson TE. Parsing reward. Trends Neurosci 2003; 26: 507-513.
- 32 Calabresi P, Picconi B, Tozzi A, Di FM. Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci 2007; 30: 211-219.
- 33 Wickens JR. Synaptic plasticity in the basal ganglia. Behav Brain Res 2009; 199: 119-128.
- 34 Brown RG, Marsden CD. An investigation of the phenomenon of "set" in Parkinson's disease. Mov Disord 1988; 3: 152-161.
- 35 Cools AR, van den Bercken JH, Horstink MW, van Spaendonck KP, Berger HJ. Cognitive and motor shifting aptitude disorder in Parkinson's disease. J Neurol Neurosurg Psychiatry 1984; 47: 443-453.
- 36 Frank MJ, Scheres A, Sherman SJ. Understanding decision-making deficits in neurological conditions: insights from models of natural action selection. Philos Trans R Soc Lond B Biol Sci 2007; 362: 1641-1654.
- 37 Lawrence AD, Sahakian BJ, Hodges JR, Rosser AE, Lange KW, Robbins TW. Executive and mnemonic functions in early Huntington's disease. Brain 1996; 119: 1633-1645.
- 38 Lawrence AD, Hodges JR, Rosser AE, et al. Evidence for specific cognitive deficits in preclinical Huntington's disease. Brain 1998; 121: 1329-1341.
- 39 Mink JW. The basal ganglia: focused selection and inhibition of competing motor programs. Prog Neurobiol 1996; 50: 381-425.
- 40 Apicella P. Tonically active neurons in the primate striatum and their role in the processing of information about motivationally relevant events. Eur J Neurosci 2002; 16: 2017-2026.
- 41 Apicella P. Leading tonically active neurons of the striatum from reward detection to context recognition. Trends Neurosci 2007; 30: 299-306.
- 42 Graybiel AM, Aosaki T, Flaherty AW, Kimura M. The basal ganglia and adaptive motor control. Science 1994; 265: 1826-1831.
- 43 Kimura M, Rajkowski J, Evarts E. Tonically discharging putamen neurons exhibit set-dependent responses. Proc Natl Acad Sci U S A 1984; 81: 4998-5001.
- 44 Kawaguchi Y. Physiological, morphological, and histochemical characterization of three classes of interneurons in rat neostriatum. J Neurosci 1993; 13: 4908-4923.
- 45 Kawaguchi Y, Wilson CJ, Augood SJ, Emson PC. Striatal interneurones: chemical, physiological and morphological characterization. Trends Neurosci 1995; 18: 527-535.
- 46 Wilson CJ, Chang HT, Kitai ST. Firing patterns and synaptic potentials of identified giant aspiny interneurons in the rat neostriatum. J Neurosci 1990; 10: 508-519.
- 47 Graveland GA, DiFiglia M. The frequency and distribution of medium-sized neurons with indented nuclei in the primate and rodent neostriatum. Brain Res 1985; 327: 307-311.
- 48 Graveland GA, Williams RS, DiFiglia M. A Golgi study of the human neostriatum: neurons and afferent fibers. J Comp Neurol 1985; 234: 317-333.
- 49 Dautan D, Huerta-Ocampo I, Witten IB, Deisseroth K, Bolam JP, Gerdjikov T et al. A major external source of cholinergic innervation of the striatum and nucleus accumbens originates in the brainstem. J Neurosci 2014; 34: 4509-4518.
- 50 Bolam JP, Wainer BH, Smith AD. Characterization of cholinergic neurons in the rat neostriatum. A combination of choline acetyltransferase immunocytochemistry, Golgi-impregnation and electron microscopy. Neuroscience 1984; 12: 711-718.
- 51 Smith AD, Bolam JP. The neural network of the basal ganglia as revealed by the study of synaptic connections of identified neurones. Trends Neurosci 1990; 13: 259-265.
- 52 Chang HT. Dopamine-acetylcholine interaction in the rat striatum: a dual-labeling immunocytochemical study. Brain Res Bull 1988; 21: 295-304.
- 53 Dimova R, Vuillet J, Nieoullon A, Kerkerian-Le GL. Ultrastructural features of the choline acetyltransferase-containing neurons and relationships with nigral dopaminergic and cortical afferent pathways in the rat striatum. Neuroscience 1993; 53: 1059-1071.
- 54 Kubota Y, Inagaki S, Shimada S, Kito S, Eckenstein F, Tohyama M. Neostriatal cholinergic neurons receive direct synaptic inputs from dopaminergic axons. Brain Res 1987; 413: 179-184.
- 55 Bolam JP, Ingham CA, Izzo PN, Levey AI, Rye DB, Smith AD et al. Substance P-containing terminals in synaptic contact with cholinergic neurons in the neostriatum and basal forebrain: a double immunocytochemical study in the rat. Brain Res 1986; 397: 279-289.
- 56 Martone ME, Armstrong DM, Young SJ, Groves PM. Ultrastructural examination of enkephalin and substance P input to cholinergic neurons within the rat neostriatum. Brain Res 1992; 594: 253-262.
- 57 Chang HT, Kita H. Interneurons in the rat striatum: relationships between parvalbumin neurons and cholinergic neurons. Brain Res 1992; 574: 307-311.
- 58 Vuillet J, Dimova R, Nieoullon A, Kerkerian-Le GL. Ultrastructural relationships between choline acetyltransferase- and neuropeptide y-containing neurons in the rat striatum. Neuroscience 1992; 46: 351-360.
- 59 Doig NM, Magill PJ, Apicella P, Bolam JP, Sharott A. Cortical and thalamic excitation mediate the multiphasic responses of striatal cholinergic interneurons to motivationally salient stimuli. J Neurosci 2014; 34: 3101-3117.
- 60 Lapper SR, Bolam JP. Input from the frontal cortex and the parafascicular nucleus to cholinergic interneurons in the dorsal striatum of the rat. Neuroscience 1992; 51: 533-545.
- 61 Reynolds JN, Wickens JR. The corticostriatal input to giant aspiny interneurons in the rat: a candidate pathway for synchronising the response to reward-related cues. Brain Res 2004; 1011: 115-128.
- 62 Sidibe M, Smith Y. Thalamic inputs to striatal interneurons in monkeys: synaptic organization and co-localization of calcium binding proteins. Neuroscience 1999; 89: 1189-1208.
- 63 Ding JB, Guzman JN, Peterson JD, Goldberg JA, Surmeier DJ. Thalamic gating of corticostriatal signaling by cholinergic interneurons. Neuron 2010; 67: 294-307.
- 64 Matsumoto N, Minamimoto T, Graybiel AM, Kimura M. Neurons in the thalamic CM-Pf complex supply striatal neurons with information about behaviorally significant sensory events. J Neurophysiol 2001; 85: 960-976.
- 65 Izzo PN, Bolam JP. Cholinergic synaptic input to different parts of spiny striatonigral neurons in the rat. J Comp Neurol 1988; 269: 219-234.
- 66 Graybiel AM, Ragsdale CW, Jr. Histochemically distinct compartments in the striatum of human, monkeys, and cat demonstrated by acetylthiocholinesterase staining. Proc Natl Acad Sci U S A 1978; 75: 5723-5726.
- 67 Graybiel AM, Baughman RW, Eckenstein F. Cholinergic neuropil of the striatum observes striosomal boundaries. Nature 1986; 323: 625-627.
- 68 Kreitzer AC. Physiology and pharmacology of striatal neurons. Annu Rev Neurosci 2009; 32: 127-147.
- 69 Amemori K, Gibb LG, Graybiel AM. Shifting responsibly: the importance of striatal modularity to reinforcement learning in uncertain environments. Front Hum Neurosci 2011; 5: 47.
- 70 Wilson CJ. The mechanism of intrinsic amplification of hyperpolarizations and spontaneous bursting in striatal cholinergic interneurons. Neuron 2005; 45: 575-585.
- 71 Wilson CJ, Goldberg JA. Origin of the slow afterhyperpolarization and slow rhythmic bursting in striatal cholinergic interneurons. J Neurophysiol 2006; 95: 196-204.
- 72 Bennett BD, Wilson CJ. Spontaneous activity of neostriatal cholinergic interneurons in vitro. J Neurosci 1999; 19: 5586-5596.
- 73 Goldberg JA, Wilson CJ. Control of spontaneous firing patterns by the selective coupling of calcium currents to calcium-activated potassium currents in striatal cholinergic interneurons. J Neurosci 2005; 25: 10230-10238.
- 74 Alexander GE, DeLong MR. Microstimulation of the primate neostriatum. I. Physiological properties of striatal microexcitable zones. J Neurophysiol 1985; 53: 1401-1416.
- 75 Aosaki T, Tsubokawa H, Ishida A, Watanabe K, Graybiel AM, Kimura M. Responses of tonically active neurons in the primate's striatum undergo systematic changes during behavioral sensorimotor conditioning. J Neurosci 1994; 14: 3969-3984.
- 76 Benhamou L, Kehat O, Cohen D. Firing pattern characteristics of tonically active neurons in rat striatum: context dependent or species divergent? J Neurosci 2014; 34: 2299-2304.
- 77 Crutcher MD, DeLong MR. Single cell studies of the primate putamen. I. Functional organization. Exp Brain Res 1984; 53: 233-243.
- 78 Raz A, Feingold A, Zelanskaya V, Vaadia E, Bergman H. Neuronal synchronization of tonically active neurons in the striatum of normal and parkinsonian primates. J Neurophysiol 1996; 76: 2083-2088.
- 79 Adler A, Finkes I, Katabi S, Prut Y, Bergman H. Encoding by synchronization in the primate striatum. J Neurosci 2013; 33: 4854-4866.
- 80 Apicella P, Legallet E, Trouche E. Responses of tonically discharging neurons in the monkey striatum to primary rewards delivered during different behavioral states. Exp Brain Res 1997; 116: 456-466.
- 81 Apicella P, Ravel S, Sardo P, Legallet E. Influence of predictive information on responses of tonically active neurons in the monkey striatum. J Neurophysiol 1998; 80: 3341-3344.
- 82 Blazquez PM, Fujii N, Kojima J, Graybiel AM. A network representation of response probability in the striatum. Neuron 2002; 33: 973-982.
- 83 Deffains M, Legallet E, Apicella P. Modulation of neuronal activity in the monkey putamen associated with changes in the habitual order of sequential movements. J Neurophysiol 2010; 104: 1355-1369.
- 84 Shimo Y, Hikosaka O. Role of tonically active neurons in primate caudate in reward-oriented saccadic eye movement. J Neurosci 2001; 21: 7804-7814.
- 85 Ravel S, Legallet E, Apicella P. Tonically active neurons in the monkey striatum do not preferentially respond to appetitive stimuli. Exp Brain Res 1999; 128: 531-534.
- 86 Ravel S, Legallet E, Apicella P. Responses of tonically active neurons in the monkey striatum discriminate between motivationally opposing stimuli. J Neurosci 2003; 23: 8489-8497.
- 87 Ravel S, Sardo P, Legallet E, Apicella P. Reward unpredictability inside and outside of a task context as a determinant of the responses of tonically active neurons in the monkey striatum. J Neurosci 2001; 21: 5730-5739.
- 88 Sardo P, Ravel S, Legallet E, Apicella P. Influence of the predicted time of stimuli eliciting movements on responses of tonically active neurons in the monkey striatum. Eur J Neurosci 2000; 12: 1801-1816.
- 89 Adler A, Katabi S, Finkes I, Israel Z, Prut Y, Bergman H. Temporal convergence of dynamic cell assemblies in the striato-pallidal network. J Neurosci 2012; 32: 2473-2484.
- 90 Apicella P, Deffains M, Ravel S, Legallet E. Tonically active neurons in the striatum differentiate between delivery and omission of expected reward in a probabilistic task context. Eur J Neurosci 2009; 30: 515-526.
- 91 Apicella P, Ravel S, Deffains M, Legallet E. The role of striatal tonically active neurons in reward prediction error signaling during instrumental task performance. J Neurosci 2011; 31: 1507-1515.
- 92 Niv Y, Schoenbaum G. Dialogues on prediction errors. Trends Cogn Sci 2008; 12: 265-272.
- 93 Schultz W, Dickinson A. Neuronal coding of prediction errors. Annu Rev Neurosci 2000; 23: 473-500.
- 94 Kimura M, Matsumoto N, Okahashi K, et al. Goal-directed, serial and synchronous activation of neurons in the primate striatum. Neuroreport 2003; 14: 799-802.
- 95 Joshua M, Adler A, Prut Y, Vaadia E, Wickens JR, Bergman H. Synchronization of midbrain dopaminergic neurons is enhanced by rewarding events. Neuron 2009; 62: 695-704.
- 96 Arbuthnott GW, Wickens J. Space, time and dopamine. Trends Neurosci 2007; 30: 62-69.
- 97 Moss J, Bolam JP. A dopaminergic axon lattice in the striatum and its relationship with cortical and thalamic terminals. J Neurosci 2008; 28: 11221-11230.
- 98 Goldberg JA, Reynolds JN. Spontaneous firing and evoked pauses in the tonically active cholinergic interneurons of the striatum. Neuroscience 2011; 198: 27-43.
- 99 Calabresi P, Maj R, Mercuri NB, Bernardi G. Coactivation of D1 and D2 dopamine receptors is required for long-term synaptic depression in the striatum. Neurosci Lett 1992; 142: 95-99.
- 100 Centonze D, Picconi B, Gubellini P, Bernardi G, Calabresi P. Dopaminergic control of synaptic plasticity in the dorsal striatum. Eur J Neurosci 2001; 13: 1071-1077.
- 101 Lovinger DM, Tyler EC, Merritt A. Short- and long-term synaptic depression in rat neostriatum. J Neurophysiol 1993; 70: 1937-1949.
- 102 Surmeier DJ, Plotkin J, Shen W. Dopamine and synaptic plasticity in dorsal striatal circuits controlling action selection. Curr Opin Neurobiol 2009; 19: 621-628.
- 103 Calabresi P, Pisani A, Mercuri NB, Bernardi G. The corticostriatal projection: from synaptic plasticity to dysfunctions of the basal ganglia. Trends Neurosci 1996; 19: 19-24.
- 104 Mahon S, Deniau JM, Charpier S. Corticostriatal plasticity: life after the depression. Trends Neurosci 2004; 27: 460-467.
- 105 Abbott LF, Nelson SB. Synaptic plasticity: taming the beast. Nat Neurosci 2000; 3(Suppl): 1178-1183.
- 106 Sjostrom PJ, Nelson SB. Spike timing, calcium signals and synaptic plasticity. Curr Opin Neurobiol 2002; 12: 305-314.
- 107 Pawlak V, Kerr JN. Dopamine receptor activation is required for corticostriatal spike-timing-dependent plasticity. J Neurosci 2008; 28: 2435-2446.
- 108 Fino E, Glowinski J, Venance L. Bidirectional activity-dependent plasticity at corticostriatal synapses. J Neurosci 2005; 25: 11279-11287.
- 109 Fino E, Venance L. Spike-timing dependent plasticity in the striatum. Front Synaptic Neurosci 2010; 2: 6.
- 110 Pawlak V, Wickens JR, Kirkwood A, Kerr JN. Timing is not everything: neuromodulation opens the STDP gate. Front Synaptic Neurosci 2010; 2: 146.
- 111 Galarraga E, Hernandez-Lopez S, Reyes A, Miranda I, Bermudez-Rattoni F, Vilchis C, Bargas J. Cholinergic modulation of neostriatal output: a functional antagonism between different types of muscarinic receptors. J Neurosci 1999; 19: 3629-3638.
- 112 Shen W, Hamilton SE, Nathanson NM, Surmeier DJ. Cholinergic suppression of KCNQ channel currents enhances excitability of striatal medium spiny neurons. J Neurosci 2005; 25: 7449-7458.
- 113 Calabresi P, Centonze D, Gubellini P, Bernardi G. Activation of M1-like muscarinic receptors is required for the induction of corticostriatal LTP. Neuropharmacology 1999; 38: 323-326.
- 114 Centonze D, Gubellini P, Bernardi G, Calabresi P. Permissive role of interneurons in corticostriatal synaptic plasticity. Brain Res Brain Res Rev 1999; 31: 1-5.
- 115 Wang Z, Kai L, Day M, et al. Dopaminergic control of corticostriatal long-term synaptic depression in medium spiny neurons is mediated by cholinergic interneurons. Neuron 2006; 50: 443-452.
- 116 Fino E, Deniau JM, Venance L. Cell-specific spike-timing-dependent plasticity in GABAergic and cholinergic interneurons in corticostriatal rat brain slices. J Physiol 2008; 586: 265-282.
- 117 Exley R, Cragg SJ. Presynaptic nicotinic receptors: a dynamic and diverse cholinergic filter of striatal dopamine neurotransmission. Br J Pharmacol 2008; 153(Suppl 1): S283-S297.
- 118 Hyland BI, Reynolds JN, Hay J, Perk CG, Miller R. Firing modes of midbrain dopamine cells in the freely moving rat. Neuroscience 2002; 114: 475-492.
- 119 Zhang H, Sulzer D. Frequency-dependent modulation of dopamine release by nicotine. Nat Neurosci 2004; 7: 581-582.
- 120 Reynolds JN, Wickens JR. Dopamine-dependent plasticity of corticostriatal synapses. Neural Netw 2002; 15: 507-521.
- 121 Duvoisin RC. Cholinergic-anticholinergic antagonism in parkinsonism. Arch Neurol 1967; 17: 124-136.
- 122 Fahn S. The medical treatment of Parkinson disease from James Parkinson to George Cotzias. Mov Disord 2015; 30: 4-18.
- 123 Maurice N, Mercer J, Chan CS, Hernandez-Lopez S, Held J, Tkatch T, Surmeier DJ. D2 dopamine receptor-mediated modulation of voltage-dependent Na+ channels reduces autonomous activity in striatal cholinergic interneurons. J Neurosci 2004; 24: 10289-10301.
- 124 Ding J, Guzman JN, Tkatch T, et al. RGS4-dependent attenuation of M4 autoreceptor function in striatal cholinergic interneurons following dopamine depletion. Nat Neurosci 2006; 9: 832-842.
- 125 Fino E, Glowinski J, Venance L. Effects of acute dopamine depletion on the electrophysiological properties of striatal neurons. Neurosci Res 2007; 58: 305-316.
- 126 Hernandez LF, Kubota Y, Hu D, Howe MW, Lemaire N, Graybiel AM. Selective effects of dopamine depletion and L-DOPA therapy on learning-related firing dynamics of striatal neurons. J Neurosci 2013; 33: 4782-4795.
- 127 Aosaki T, Graybiel AM, Kimura M. Effect of the nigrostriatal dopamine system on acquired neural responses in the striatum of behaving monkeys. Science 1994; 265: 412-415.
- 128 Watanabe K, Kimura M. Dopamine receptor-mediated mechanisms involved in the expression of learned activity of primate striatal neurons. J Neurophysiol 1998; 79: 2568-2580.
- 129 Raz A, Frechter-Mazar V, Feingold A, Abeles M, Vaadia E, Bergman H. Activity of pallidal and striatal tonically active neurons is correlated in mptp-treated monkeys but not in normal monkeys. J Neurosci 2001; 21: RC128.
- 130 Calabresi P, Maj R, Pisani A, Mercuri NB, Bernardi G. Long-term synaptic depression in the striatum: physiological and pharmacological characterization. J Neurosci 1992; 12: 4224-4233.
- 131 Centonze D, Gubellini P, Picconi B, Calabresi P, Giacomini P, Bernardi G. Unilateral dopamine denervation blocks corticostriatal LTP. J Neurophysiol 1999; 82: 3575-3579.
- 132 Picconi B, Centonze D, Hakansson K, et al. Loss of bidirectional striatal synaptic plasticity in L-DOPA-induced dyskinesia. Nat Neurosci 2003; 6: 501-506.
- 133 Pisani A, Centonze D, Bernardi G, Calabresi P. Striatal synaptic plasticity: implications for motor learning and Parkinson's disease. Mov Disord 2005; 20: 395-402.
- 134 Salin P, Lopez IP, Kachidian P, et al. Changes to interneuron-driven striatal microcircuits in a rat model of Parkinson's disease. Neurobiol Dis 2009; 34: 545-552.
- 135 Shen W, Tian X, Day M, Ulrich S, Tkatch T, Nathanson NM, Surmeier DJ. Cholinergic modulation of Kir2 channels selectively elevates dendritic excitability in striatopallidal neurons. Nat Neurosci 2007; 10: 1458-1466.
- 136 Nishijima H, Suzuki S, Kon T, et al. Morphologic changes of dendritic spines of striatal neurons in the levodopa-induced dyskinesia model. Mov Disord 2014; 29: 336-343.
- 137 Picconi B, Paille V, Ghiglieri V, et al. l-DOPA dosage is critically involved in dyskinesia via loss of synaptic depotentiation. Neurobiol Dis 2008; 29: 327-335.
- 138 Ding Y, Won L, Britt JP, Lim SA, McGehee DS, Kang UJ. Enhanced striatal cholinergic neuronal activity mediates L-DOPA-induced dyskinesia in parkinsonian mice. Proc Natl Acad Sci U S A 2011; 108: 840-845.
- 139 Won L, Ding Y, Singh P, Kang UJ. Striatal cholinergic cell ablation attenuates L-DOPA induced dyskinesia in Parkinsonian mice. J Neurosci 2014; 34: 3090-3094.
- 140 Fahn S, Bressman SB, Marsden CD. Classification of dystonia. Adv Neurol 1998; 78: 1-10.
- 141 Albanese A, Lalli S. Update on dystonia. Curr Opin Neurol 2012; 254): 483-490.
- 142 Fahn S. High dosage anticholinergic therapy in dystonia. Neurology 1983; 33: 1255-1261.
- 143 Pisani A, Martella G, Tscherter A, et al. Altered responses to dopaminergic D2 receptor activation and N-type calcium currents in striatal cholinergic interneurons in a mouse model of DYT1 dystonia. Neurobiol Dis 2006; 24: 318-325.
- 144 Clos MV, Garcia-Sanz A, Vivas NM, Badia A. D2 dopamine receptors and modulation of spontaneous acetylcholine ACh) release from rat striatal synaptosomes. Br J Pharmacol 1997; 122: 286-290.
- 145 DeBoer P, Heeringa MJ, Abercrombie ED. Spontaneous release of acetylcholine in striatum is preferentially regulated by inhibitory dopamine D2 receptors. Eur J Pharmacol 1996; 317: 257-262.
- 146 Yan Z, Song WJ, Surmeier J. D2 dopamine receptors reduce N-type Ca2+ currents in rat neostriatal cholinergic interneurons through a membrane-delimited, protein-kinase-C-insensitive pathway. J Neurophysiol 1997; 77: 1003-1015.
- 147 Martella G, Tassone A, Sciamanna G, et al. Impairment of bidirectional synaptic plasticity in the striatum of a mouse model of DYT1 dystonia: role of endogenous acetylcholine. Brain 2009; 132: 2336-2349.
- 148 Sciamanna G, Tassone A, Mandolesi G, et al. Cholinergic dysfunction alters synaptic integration between thalamostriatal and corticostriatal inputs in DYT1 dystonia. J Neurosci 2012; 32: 11991-12004.
- 149 Andre VM, Fisher YE, Levine MS. Altered balance of activity in the striatal direct and indirect pathways in mouse models of Huntington's disease. Front Syst Neurosci 2011; 5: 46.
- 150 Galvan L, Andre VM, Wang EA, Cepeda C, Levine MS. Functional differences between direct and indirect striatal output pathways in Huntington's disease. J Huntingtons Dis 2012; 1: 17-25.
- 151 Li SH, Li XJ. Huntingtin-protein interactions and the pathogenesis of Huntington's disease. Trends Genet 2004; 20: 146-154.
- 152 Graveland GA, Williams RS, DiFiglia M. Evidence for degenerative and regenerative changes in neostriatal spiny neurons in Huntington's disease. Science 1985; 227: 770-773.
- 153 Mangiarini L, Sathasivam K, Seller M, et al. Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 1996; 87: 493-506.
- 154 Smith R, Chung H, Rundquist S, Maat-Schieman ML, Colgan L, Englund E et al. Cholinergic neuronal defect without cell loss in Huntington's disease. Hum Mol Genet 2006; 15: 3119-3131.
- 155 Vetter JM, Jehle T, Heinemeyer J, et al. Mice transgenic for exon 1 of Huntington's disease: properties of cholinergic and dopaminergic pre-synaptic function in the striatum. J Neurochem 2003; 85: 1054-1063.
- 156 Hiley CR, Bird ED. Decreased muscarinic receptor concentration in post-mortem brain in Huntington's chorea. Brain Res 1974; 80: 355-358.
- 157 Wastek GJ, Stern LZ, Johnson PC, Yamamura HI. Huntington's disease: regional alteration in muscarinic cholinergic receptor binding in human brain. Life Sci 1976; 19: 1033-1039.
- 158 Ferrante RJ, Beal MF, Kowall NW, Richardson EP, Jr., Martin JB. Sparing of acetylcholinesterase-containing striatal neurons in Huntington's disease. Brain Res 1987; 411: 162-166.
- 159 Suzuki M, Desmond TJ, Albin RL, Frey KA. Vesicular neurotransmitter transporters in Huntington's disease: initial observations and comparison with traditional synaptic markers. Synapse 2001; 41: 329-336.
- 160 Callahan JW, Abercrombie ED. In vivo dopamine efflux is decreased in striatum of both fragment (R6/2) and full-length (YAC128) transgenic mouse models of Huntington's disease. Front Syst Neurosci 2011; 5: 61.
- 161 Farrar AM, Callahan JW, Abercrombie ED. Reduced striatal acetylcholine efflux in the R6/2 mouse model of Huntington's disease: an examination of the role of altered inhibitory and excitatory mechanisms. Exp Neurol 2011; 232: 119-125.
- 162
Brooks SP,
Dunnett SB. Mouse models of Huntington's disease. Curr Top Behav Neurosci 2013.
10.1007/7854_2013_256 Google Scholar
- 163 Brown HD, Baker PM, Ragozzino ME. The parafascicular thalamic nucleus concomitantly influences behavioral flexibility and dorsomedial striatal acetylcholine output in rats. J Neurosci 2010; 30: 14390-14398.
- 164 Bamford NS, Zhang H, Joyce JA, et al. Repeated exposure to methamphetamine causes long-lasting presynaptic corticostriatal depression that is renormalized with drug readministration. Neuron 2008; 58: 89-103.
- 165 Williams MJ, Adinoff B. The role of acetylcholine in cocaine addiction. Neuropsychopharmacology 2008; 33: 1779-1797.
- 166 Aliane V, Perez S, Bohren Y, Deniau JM, Kemel ML. Key role of striatal cholinergic interneurons in processes leading to arrest of motor stereotypies. Brain 2011; 134: 110-118.
- 167 Blier P, El MM. Serotonin and beyond: therapeutics for major depression. Philos Trans R Soc Lond B Biol Sci 2013; 368: 20120536.
- 168 Denys D, de Vries F, Cath D, et al. Dopaminergic activity in Tourette syndrome and obsessive-compulsive disorder. Eur Neuropsychopharmacol 2013; 23: 1423-1431.
- 169 Kataoka Y, Kalanithi PS, Grantz H, Schwartz ML, Saper C, Leckman JF, Vaccarino FM. Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome. J Comp Neurol 2010; 518: 277-291.
- 170 Xu M, Kobets A, Du JC, et al. Targeted ablation of cholinergic interneurons in the dorsolateral striatum produces behavioral manifestations of Tourette syndrome. Proc Natl Acad Sci U S A 2015; 112: 893-898.
- 171 Allendes FE, Lozano AM, Hutchison WD. Attenuation of long-term depression in human striatum after anterior capsulotomy. Stereotact Funct Neurosurg 2008; 86: 224-230.
- 172 Kalia LV, Brotchie JM, Fox SH. Novel nondopaminergic targets for motor features of Parkinson's disease: review of recent trials. Mov Disord 2013; 28: 131-144.